Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
BMC Genomics ; 25(1): 253, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448864

RESUMO

BACKGROUND: The genus Pseudoroegneria (Nevski) Löve (Triticeae, Poaceae), whose genome symbol was designed as "St", accounts for more than 60% of perennial Triticeae species. The diploid species Psudoroegneria libanotica (2n = 14) contains the most ancient St genome, exhibited strong drought resistance, and was morphologically covered by cuticular wax on the aerial part. Therefore, the St-genome sequencing data could provide fundamental information for studies of genome evolution and reveal its mechanisms of cuticular wax and drought resistance. RESULTS: In this study, we reported the chromosome-level genome assembly for the St genome of Pse. libanotica, with a total size of 2.99 Gb. 46,369 protein-coding genes annotated and 71.62% was repeat sequences. Comparative analyses revealed that the genus Pseudoroegneria diverged during the middle and late Miocene. During this period, unique genes, gene family expansion, and contraction in Pse. libanotica were enriched in biotic and abiotic stresses, such as fatty acid biosynthesis which may greatly contribute to its drought adaption. Furthermore, we investigated genes associated with the cuticular wax formation and water deficit and found a new Kcs gene evm.TU.CTG175.54. It plays a critical role in the very long chain fatty acid (VLCFA) elongation from C18 to C26 in Pse. libanotica. The function needs more evidence to be verified. CONCLUSIONS: We sequenced and assembled the St genome in Triticeae and discovered a new KCS gene that plays a role in wax extension to cope with drought. Our study lays a foundation for the genome diversification of Triticeae species and deciphers cuticular wax formation genes involved in drought resistance.


Assuntos
Resistência à Seca , Elymus , Mapeamento Cromossômico , Cromossomos , Ácidos Graxos
2.
Genes Genomics ; 46(5): 589-599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536618

RESUMO

BACKGROUND: Elymus atratus (Nevski) Hand.-Mazz. is perennial hexaploid wheatgrass. It was assigned to the genus Elymus L. sensu stricto based on morphological characters. Its genome constitution has not been disentangled yet. OBJECTIVE: To identify the genome constitution and origin of E. atratus. METHODS: In this study, genomic in situ hybridization and fluorescence in situ hybridization, and phylogenetic analysis based on the Acc1, DMC1 and matK sequences were performed. RESULTS: Genomic in situ hybridization and fluorescence in situ hybridization results reveal that E. atratus 2n = 6x = 42 is composed of 14 St genome chromosomes, 14 H genome chromosomes, and 14 Y genome chromosomes including two H-Y type translocation chromosomes, suggesting that the genome formula of E. atratus is StStYYHH. The phylogenetic analysis based on Acc1 and DMC1 sequences not only shows that the Y genome originated in a separate diploid, but also suggests that Pseudoroegneria (St), Hordeum (H), and a diploid species with Y genome were the potential donors of E. atratus. Data from chloroplast DNA showed that the maternal donor of E. atratus contains the St genome. CONCLUSION: Elymus atratus is an allohexaploid species with StYH genome, which may have originated through the hybridization between an allotetraploid Roegneria (StY) species as the maternal donor and a diploid Hordeum (H) species as the paternal donor.


Assuntos
Elymus , Hordeum , Elymus/genética , Filogenia , Hibridização in Situ Fluorescente , Genoma de Planta , Hordeum/genética
3.
Sci Total Environ ; 915: 169949, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220004

RESUMO

Spatial arrangement is a key factor in maintaining community yield and stability via regulating component intra-/interspecific competition in an alpine climate environment. A 2-yr field trial was conducted on the Qinghai Tibetan Plateau, including cross row (S_C), double row (S_D), single row (S_R), broadcast (M_B), dependent row (M_D) and independent row (M_I). Our results showed that S_C could avoid intraspecific competition by reasonable spatial arrangement, which favored the dominant component growth (1st year: leaf; 2nd year: stem and reproductive organ). For mixed communities, RII (relative interaction intensity) implied that interspecific competition also embodied on dominant component, and higher Elymus nutans component advantages seriously limited Onobrychis viciifolia's components growth in the 2nd year. More details displayed that E. nutans in M_B or M_D produced the maximum system yield via increasing leaf investment at the initial stages and stem investment after July 2019. Besides, M_I possessed lower component numbers than M_B and M_D in the unit area. PCA analysis revealed that component numbers or biomasses changed synchronously, besides the E. nutans of S_C, M_B, and M_D presented significant discrepancies compared to other treatments in September 2019, which verified the effect of sowing patterns on component growth (P < 0.05), but O. viciifolia in different sowing patterns was similar in the 2nd year. Considering the adaptability and production for the environment of the Qinghai Tibetan Plateau, S_C is recommended for the promoted effect on component biomasses. M_B and M_D, with the merit of spacing utilization as well as higher resistance to variation in seasonal growth conditions via optimizing interspecific relationships for mixed communities, are adapted for increasing yield via component harvesting. Our results unveiled the potential of optimizing spatial usage efficiency via controlling component growth characteristics and stressed the importance of dynamic change of dominant components to enhance forage system production in alpine regions.


Assuntos
Elymus , Tibet , Pradaria , Clima , Biomassa
4.
Environ Sci Pollut Res Int ; 31(6): 8985-8999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183551

RESUMO

Drought and salt stress negatively influence the growth and development of various plant species. Thus, it is crucial to overcome these stresses for sustainable agricultural production and the global food chain. Therefore, the present study investigated the potential effects of exogenous silicon nanoparticles (SiNPs) on the physiological and biochemical parameters, and endogenous phytohormone contents of Elymus sibiricus under drought and salt stress. Drought stress was given as 45% water holding capacity, and salt stress was given as 120 mM NaCl. The seed priming was done with different SiNP concentrations: SiNP1 (50 mg L-1), SiNP2 (100 mg L-1), SiNP3 (150 mg L-1), SiNP4 (200 mg L-1), and SiNP5 (250 mg L-1). Both stresses imposed harmful impacts on the analyzed parameters of plants. However, SiNP5 increased the chlorophylls and osmolyte accumulation such as total proteins by 96% and 110% under drought and salt stress, respectively. The SiNP5 significantly decreased the oxidative damage and improved the activities of SOD, CAT, POD, and APX by 10%, 54%, 104%, and 211% under drought and 42%, 75%, 72%, and 215% under salt stress, respectively. The SiNPs at all concentrations considerably improved the level of different phytohormones to respond to drought and salt stress and increased the tolerance of Elymus plants. Moreover, SiNPs decreased the Na+ and increased K+ concentrations in Elymus suggesting the reduction in salt ion accumulation under salinity stress. Overall, exogenous application (seed priming/dipping) of SiNPs considerably enhanced the physio-biochemical and metabolic responses, resulting in an increased tolerance to drought and salt stresses. Therefore, this study could be used as a reference to further explore the impacts of SiNPs at molecular and genetic level to mitigate abiotic stresses in forages and related plant species.


Assuntos
Antioxidantes , Elymus , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas , Silício/farmacologia , Elymus/metabolismo , Secas , Estresse Salino , Estresse Fisiológico
5.
Microbiol Spectr ; 12(1): e0251623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054628

RESUMO

IMPORTANCE: On the Qinghai-Tibet Plateau (QTP), feed shortages are common due to cold environmental conditions and the short growing season of crops. Therefore, effective preservation, such as the ensiling of local forage, is becoming increasingly important to balance the seasonal imbalance between the forage supply and the nutritional needs of domestic animals in this area. However, the structure of the microbial community of the forage, which is influenced by climatic conditions such as altitude differences, has a major impact on the fermentation quality and microbial succession of the ensiled forage. Therefore, we investigated microbial community dynamics, co-occurrence, functional shifts, and natural fermentation profiles of Elymus nutans silage as a function of altitudinal gradients. Results show that silage from Chenduo at higher elevations has better fermentation quality and higher abundance of Lacticaseibacillus and Levilactobacillus than ensiled forage from other regions. This work may contribute to guiding for silage production in QTP.


Assuntos
Elymus , Microbiota , Animais , Fermentação , Silagem/análise , Lactobacillaceae
6.
Sci Total Environ ; 912: 169528, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142005

RESUMO

Soil erosion leads to soil degradation and depletion of land resources, posing a significant threat to industrial production and ecological sustainability. In high-altitude regions, rill erosion is the main form of soil erosion in mining areas, however, our understanding of morphology and developmental characteristics of rills and the mechanisms influencing them remains limited. In this study, data were collected from 96 rill plots across two gold mines in the eastern Tibetan Plateau according to vegetation restoration modes (natural restoration (CK) and planted with Elymus dahuricus (ED), Medicago sativa (MS), and multi-plant mixed (Avena fatua L. + Elymus dahuricus + Medicago sativa + Oxytropis coerulea, MM)) and restoration periods (1 year, 3 years, 4 years, and 6 years). We investigated the variations of 7 indicators that can reveal rill morphological and developmental characteristics across different restoration modes and restoration periods, and utilized a partial least squares structural equation model (PLS-SEM) to analyze the effects of 15 indicators from topography, soil, and vegetation on rill erosion modulus (REM). The results indicated that artificial vegetation restoration effectively restrained rill development, notably by decreasing the frequency of wider (>15 cm) and deeper (>10 cm) rills when compared to CK plots. Planting MM and ED exhibited greater efficacy in controlling rill erosion than planting MS. However, the effectiveness of planting ED in controlling rill erosion gradually weakened with time, while MM consistently maintained a strong inhibitory effect. Topographic features, soil texture, and vegetation significantly influenced the REM through direct or indirect effects. Plant root functional traits were the main driving factors in reducing REM, affecting not only REM directly but also influencing vegetation-induced soil properties to indirectly effect REM.


Assuntos
Altitude , Elymus , Plantas , Solo , Mineração , China
7.
Sci Total Environ ; 905: 167140, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722424

RESUMO

Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.


Assuntos
Elymus , Microbiota , Poluentes do Solo , Plantas Tolerantes a Sal/metabolismo , Substâncias Húmicas/análise , Óxido de Alumínio/química , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Bacteroidetes
8.
PeerJ ; 11: e15968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641594

RESUMO

Drought and soil salinization are global environmental issues, and Elymus nutans play an important role in vegetation restoration in arid and saline environments due to their excellent stress resistance. In the process of vegetation restoration, the stage from germination to seedling growth of forage is crucial. This experiment studied the effects of PEG-6000 simulated drought stress and NaCl simulated salinization stress on the germination of E. nutans seeds, and explored the growth of forage seedlings from sowing to 28 days under drought and salinization stress conditions. The results showed that under the same environmental water potential, there were significant differences in responses of seed germination, seedling growth, organic carbon, total nitrogen and total phosphorus of above-ground and underground parts of E. nutans to drought stress and salinization stress. Using the membership function method to comprehensively evaluate the seed germination and seedling indicators of E. nutans, it was found that under the same environmental water potential, E. nutans was more severely affected by drought stress during both the seed germination and seedling growth stages. E. nutans showed better salt tolerance than drought resistance.


Assuntos
Elymus , Plântula , Secas , Germinação , Sementes , Estresse Salino , Água
9.
PeerJ ; 11: e15150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065700

RESUMO

Elymus sibiricus L. is a perennial forage species that has potential to serve as a forage source in livestock grazing systems. However, E. sibiricus has been shown to have a rapid and substantial reduction of aboveground biomass and seed yield after 3 or 4 years and an accelerated aging process. To determine possible aging mechanisms, we planted E. sibiricus seeds in triplicate blocks in 2012, 2015, and 2016, respectively, and harvested samples of leaves and roots at the jointing and heading stages in 2018 and 2019 to determine oxidative indices and endogenous hormones. The fresh aboveground biomass of 4- and 5-year old plants declined by 34.2% and 52.4% respectively compared with 3-year old plants, and the seed yield declined by 12.7% and 34.1%, respectively. The water content in leaves was 51.7%, 43.3%, and 35.6%, and net photosynthesis was 7.73, 6.35, and 2.08 µmol/m2·s in 3-, 4-, and 5-year old plants, respectively. The superoxide anion radical generation rate in leaves and roots did not show any aging pattern. There was a non-significant increase in malondialdehyde concentration with plant age, particularly in leaves and roots at the heading stage in 2019. The superoxide dismutase activity showed a declining trend with age of plant roots at the jointing stage in both 2018 and 2019. The peroxidase activity declined with plant age in both leaves and roots, for example, and the catalase activity in roots 4- and 7-year old plants declined by 13.8% and 0.85%, respectively, compared to 3-year old plants at the heading stage in 2018. Therefore, the reduced capacity of the antioxidant system may lead to oxidative stress during plant aging process. Overall, the concentrations of plant hormones, auxin (IAA), gibberellin (GA), zeatin (ZT), and abscisic acid (ABA) were significantly lower in roots than in leaves. The IAA concentration in leaves and roots exhibited different patterns with plant age. The ZT concentrations in leaves of 3-year old plants was 2.39- and 2.62-fold of those in 4- and 7-year old plants, respectively at the jointing stage, and in roots, the concentration declined with plant age. The changes in the GA concentration with plant age varied between the physiological stages and between years. The ABA concentrations appeared to increase with plant age, particularly in leaves. In conclusion, the aging process of E. sibiricus was apparently associated with an increase in oxidative stress, a decrease of ZT and an increase of ABA, particularly in roots. These findings highlight the effects of plant age on the antioxidant and endogenous hormone activity of E. sibiricus. However, these plant age-related trends showed variations between plant physiological stages and between harvest years that needs to be researched in the future to develop strategies to manage this forage species.


Assuntos
Antioxidantes , Elymus , Elymus/fisiologia , Tibet , Reguladores de Crescimento de Plantas , Ácido Abscísico , Zeatina , Hormônios
10.
Plant Signal Behav ; 18(1): 2187561, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36938824

RESUMO

Cd pollution is a global environmental problem. However, the response mechanism of the alpine plant Pelagia under Cd stress remains unclear. Therefore, in this study, a native plant(Elymus nutans Griseb.) of the Qinghai-Tibet Plateau was used as the material to quantify plant height, leaf number, length of leaf, crown width, root number, biomass, Dry weight malondialdehyde (MDA), free proline, superoxide dismutase (SOD), ascorbate enzyme (APX), catalase (CAT) and chlorophyll contents under different Cd concentrations. The results showed that the growth of Elymus nutans Griseb. was a phenomenon of "low concentration promotes growth, high concentration inhibited growth" under Cd treatment. It meant that 10 mg·L-1 Cd promoted the growth of leaf number, plant height, crown width and tiller number, while 40 mg·L-1 Cd inhibited the growth of root number and biomass of Elymus nutans Griseb. compare with the control. The MDA content, free proline content, SOD activity, APX activity and CAT activity of Elymus nutans Griseb. was increased with the increase of Cd treatment concentration to resist the oxidative damage caused by Cd to the body. At the same time, the accumulation of chlorophyll A, chlorophyll B and chlorophyll AB was decreased with the increase of Cd stress concentration. In addition, the carotenoid content did not change much between the control group and the treatment group, indicating that Cd treatment had little effect on it. The results could provide a reference for the mechanism of heavy metal resistance and the selection and improvement of Cd -resistant varieties of Elymus nutans Griseb.


Assuntos
Antioxidantes , Elymus , Antioxidantes/farmacologia , Cádmio , Tibet , Clorofila A , Superóxido Dismutase , Clorofila , Prolina
11.
BMC Plant Biol ; 23(1): 98, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800944

RESUMO

BACKGROUND: Chromosomal variations have been revealed in both E. sibiricus and E. nutans, but chromosomal structural variations, such as intra-genome translocations and inversions, are still not recognized due to the cytological limitations of previous studies. Furthermore, the syntenic relationship between both species and wheat chromosomes remains unknown. RESULTS: Fifty-nine single-gene fluorescence in situ hybridization (FISH) probes, including 22 single-gene probes previously mapped on wheat chromosomes and other newly developed probes from the cDNA of Elymus species, were used to characterize the chromosome homoeologous relationship and collinearity of both E. sibiricus and E. nutans with those of wheat. Eight species-specific chromosomal rearrangements (CRs) were exclusively identified in E. sibiricus, including five pericentric inversions in 1H, 2H, 3H, 6H and 2St; one possible pericentric inversion in 5St; one paracentric inversion in 4St; and one reciprocal 4H/6H translocation. Five species-specific CRs were identified in E. nutans, including one possible pericentric inversion in 2Y, three possible pericentric multiple-inversions in 1H, 2H and 4Y, and one reciprocal 4Y/5Y translocation. Polymorphic CRs were detected in three of the six materials in E. sibiricus, which were mainly represented by inter-genomic translocations. More polymorphic CRs were identified in E. nutans, including duplication and insertion, deletion, pericentric inversion, paracentric inversion, and intra- or inter-genomic translocation in different chromosomes. CONCLUSIONS: The study first identified the cross-species homoeology and the syntenic relationship between E. sibiricus, E. nutans and wheat chromosomes. There are distinct different species-specific CRs between E. sibiricus and E. nutans, which may be due to their different polyploidy processes. The frequencies of intra-species polymorphic CRs in E. nutans were higher than that in E. sibiricus. To conclude, the results provide new insights into genome structure and evolution and will facilitate the utilization of germplasm diversity in both E. sibiricus and E. nutans.


Assuntos
Elymus , Elymus/genética , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas , Mapeamento Cromossômico , Translocação Genética
12.
Microb Ecol ; 86(3): 1686-1695, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36725749

RESUMO

Symbiotic mutualisms are thought to be stabilized by correlations between the interacting genotypes which may be strengthened via vertical transmission and/or reduced genetic variability within each species. Vertical transmission, however, may weaken interactions over time as the endosymbionts would acquire mutations that could not be purged. Additionally, temporal variation in a conditional mutualism could create genetic variation and increased variation in the interaction outcome. In this study, we assessed genetic variation in both members of a symbiosis, the endosymbiotic fungal endophyte Epichloë canadensis and its grass host Canada wildrye (Elymus canadensis). Both species exhibited comparable levels of diversity, mostly within populations rather than between. There were significant differences between populations, although not in the same pattern for the two species, and the differences were not correlated with geographic distance for either species. Interindividual genetic distance matrices for the two species were significantly correlated, although all combinations of discriminant analysis of principle components (DAPC) defined multilocus genotype groups were found suggesting that strict genotype matching is not necessary. Variation in interaction outcome is common in grass/endophyte interactions, and our results suggest that the accumulation of mutations overtime combined with temporal variation in selection pressures increasing genetic variation in the symbiosis may be the cause.


Assuntos
Elymus , Epichloe , Endófitos/genética , Simbiose , Epichloe/genética , Poaceae/microbiologia , Elymus/genética , Elymus/microbiologia
13.
Genes (Basel) ; 14(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36833229

RESUMO

BACKGROUND: Elymus L. is the largest genus in the Triticeae tribe. Most species in this genus are highly stress resistant, with excellent forage value. Elymus breviaristatus, a rare species endemic to the Qinghai-Tibet Plateau (QTP), is declining due to habitat fragmentation. However, genetic data for E. breviaristatus are limited, with expressed sequence tag (EST) markers being particularly rare, hampering genetic studies and protection measures. RESULTS: We obtained 9.06 Gb clean sequences from the transcriptome of E. breviaristatus, generating 171,522 unigenes, which were assembled and functionally annotated against five public databases. We identified 30,668 SSRs in the E. breviaristatus transcriptome, from which 103 EST-SSR primer pairs were randomly selected. Of these, 58 pairs of amplified products of the expected size, and 18 of the amplified products were polymorphic. Model-based Bayesian clustering, the unweighted pair group method with arithmetic average (UPGMA), and principal coordinate analysis (PCoA) of 179 wild E. breviaristatus in 12 populations using these EST-SSRs were generally consistent, grouping the 12 populations into two major clades. Analysis of molecular variance (AMOVA) found 70% of the genetic variation among the 12 populations and 30% within the populations, indicating a high level of genetic differentiation (or low gene exchange) among the 12 populations. The transferability of the 58 successful EST-SSR primers to 22 related hexaploid species was 86.2-98.3%. UPGMA analysis generally grouped species with similar genome types together. CONCLUSIONS: Here, we developed EST-SSR markers from the transcriptome of E. breviaristatus. The transferability of these markers was evaluated, and the genetic structure and diversity of E. breviaristatus were explored. Our results provide a basis for the conservation and management of this endangered species, and the obtained molecular markers represent valuable resources for the exploration of genetic relationships among species in the Elymus genus.


Assuntos
Elymus , Etiquetas de Sequências Expressas , Elymus/genética , Transcriptoma , Teorema de Bayes , Marcadores Genéticos
14.
J Microbiol Biotechnol ; 33(2): 188-194, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36655274

RESUMO

Microbacterium elymi KUDC0405T was isolated from the rhizosphere of Elymus tsukushiensis from the Dokdo Islands. The KUDC0405T strain was Gram-stain-positive, non-spore forming, non-motile, and facultatively anaerobic bacteria. Strain KUDC0405T was a rod-shaped bacterium with size dimensions of 0.3-0.4 × 0.7-0.8 µm. Based on 16S rRNA gene sequences, KUDC0405T was most closely related to Microbacterium bovistercoris NEAU-LLET (97.8%) and Microbacterium pseudoresistens CC-5209T (97.6%). The dDDH (digital DNA-DNA hybridization) values between KUDC0405T and M. bovistercoris NEAU-LLET and M. pseudoresistens CC-5209T were below 17.3% and 17.5%, respectively. The ANI (average nucleotide identity) values among strains KUDC0405T, M. bovistercoris NEAU-LLET, and M. pseudoresistens CC-5209T were 86.6% and 80.7%, respectively. The AAI (average amino acid identity) values were 64.66% and 64.97%, respectively, between KUDC0405T and its closest related type strains. The genome contained 3,596 CDCs, three rRNAs, 46 tRNAs, and three non-coding RNAs (ncRNAs). The genomic DNA GC content was 70.4%. The polar lipids included diphosphatydilglycerol, glycolipid, phosphatydilglycerol, and unknown phospholipid, and the major fatty acids were anteiso-C17:0 and iso-C16:0. Strain KUDC0405T contained MK-12 as the major menaquinone. Based on genotypic, phylogenetic, and phenotypic properties, strain KUDC0405T should be considered a novel species within the genus Microbacterium, for which we propose the name M. elymi sp. nov., and the type strain as KUDC0405T (=KCTC 49411T, =CGMCC1.18472T).


Assuntos
Elymus , Elymus/genética , Elymus/microbiologia , Microbacterium/genética , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Ácidos Graxos/química , República da Coreia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo
15.
Plant Signal Behav ; 18(1): 2163349, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645912

RESUMO

Planting Elymus nutans artificial grassland to replace degraded Artemisia baimaensis grassland on the Qinghai Tibetan plateau (QTP) can effectively alleviate local grass-livestock imbalance. However, it is unknown whether the allelopathy of natural grassland plant A. baimaensis on E. nutans affects grassland establishment. Accordingly, we examined the effects of varying concentrations of aqueous extracts of A. baimaensis litter on the seed germination and early seedling growth of E. nutans, and the effects of A. baimaensis volatile organic compounds (VOCs) on the growth parameters and physiological characteristics of E. nutans. The results indicate that the aqueous extract inhibited the force, percentage, and index of germination of E. nutans and affected early seedling growth, particularly at high concentrations. Further, the VOCs significantly reduced the aboveground and root biomass of E. nutans and increased malondialdehyde concentrations. Additionally, these VOCs altered the antioxidant enzyme activities and increased the superoxide dismutase, peroxidase, ascorbic acid peroxidase, soluble sugar, and proline content but significantly decreased glutathione reductase levels. Our results indicate that the allelopathy of A. baimaensis significantly inhibited the germination and seedling growth of E. nutans . Thus, the leaching of A. baimaensis may produce allelochemicals in the soil that inhibit the germination of E. nutans seeds. Moreover, the VOCs of A. baimaensis may disrupt the growth process, resulting in a decrease in biomass and a disruption of the physiological metabolism of seedlings under field conditions.


Assuntos
Artemisia , Elymus , Elymus/metabolismo , Pradaria , Alelopatia , Plântula , Germinação , Plantas , Sementes , Peroxidases/metabolismo , Peroxidases/farmacologia
16.
PeerJ ; 10: e14100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196396

RESUMO

The α-pinene is the main allelochemical of many weeds that inhibit the growth of Elymus nutans, an important forage and ecological restoration herbage. However, the response changes of α-pinene-induced allelopathy to E. nutans is still unclear. Here, we investigated the physiological, biochemical and phytohormone changes of E. nutans exposed to different α-pinene concentrations. The α-pinene-stress had no significant effect on height and fresh weight (FW) of seedlings. The water-soluble proteins, the soluble sugars and proline (Pro) strengthened seedlings immunity at 5 and 10 µL L-1 α-pinene. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased at 5 µL L-1 α-pinene to resist stress. APX reduced the membrane lipid peroxidation quickly at 10 µL L-1 α-pinene. The high-activity of peroxidase (POD), APX along with the high level of GSH contributed to the cellular redox equilibrium at 15 µL L-1 α-pinene. The POD, glutathione reductase (GR) activity and glutathione (GSH) level remained stable at 20 µL L-1 α-pinene. The changes in antioxidant enzymes and antioxidants indicated that E. nutans was effective in counteracting the harmful effects generated by hydrogen peroxide (H2O2). The α-pinene caused severe phytotoxic effects in E. nutans seedlings at 15 and 20 µL L-1. Endogenous signal nitric oxide (NO) and cell membrane damage product Pro accumulated in leaves of E. nutans seedlings at 15 and 20 µL L-1 α-pinene, while lipid peroxidation product malondialdehyde (MDA) accumulated. The chlorophylls (Chls), chlorophyll a (Chl a), chlorophyll b (Chl b) content decreased, and biomass of seedlings was severely inhibited at 20 µL L-1 α-pinene. The α-pinene caused phytotoxic effects on E. nutans seedlings mainly through breaking the balance of the membrane system rather than with reactive oxygen species (ROS) productionat 15 and 20 µL L-1 α-pinene. Additionally, phytohormone levels were altered by α-pinene-stress. Abscisic acid (ABA) and indole acetic acid (IAA) of E. nutans seedlings were sensitive to α-pinene. As for the degree of α-pinene stress, salicylic acid (SA) and jasmonic acid (JA) played an important role in resisting allelopathic effects at 15 µL L-1 α-pinene. The ABA, Zeatin, SA, gibberellin 7 (GA7), JA and IAA levels increased at 20 µL L-1 α-pinene. The α-pinene had a greatest impact on ABA and IAA levels. Collectively, our results suggest that E. nutans seedlings were effective in counteracting the harmful effects at 5 and 10 µL L-1 α-pinene, and they were severely stressed at 15 and 20 µL L-1 α-pinene. Our findings provided references for understanding the allelopathic mechanism about allelochemicals to plants.


Assuntos
Elymus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Elymus/metabolismo , Clorofila A/metabolismo , Peróxido de Hidrogênio/metabolismo , Alelopatia , Antioxidantes/farmacologia , Glutationa/metabolismo , Plântula , Ácido Abscísico/metabolismo , Peroxidase/metabolismo
17.
Front Biosci (Elite Ed) ; 14(3): 20, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36137993

RESUMO

BACKGROUND: The main aim of the research was to study short-term changes in the concentrations of elements in two widely distributed plant species, couch grass and nettle and in the rhizosphere soil of the plants. METHODS: The sampling of plants and soil was carried out on three dates: 3, 10, and 25 May 2021. On each day of sampling, the plants and soil were collected three times: at 9:00, 14:00, and 19:00. The ICP-OES and ICP-MS analytical techniques were used for determination of elements in the plant and soil samples. The Raman spectroscopy was applied to study variations in the organic compounds. RESULTS: The concentrations of both macro-nutrients and trace elements in plants varied greatly over daytime on all dates of sampling. The differences between concentrations of many elements in the plants collected at different times during a day were statistically significant. There were also statistically significant differences between concentrations of some elements (Na, Mg, P, K, Fe, Ba) in the plants collected on different dates. The relative intensity of diffuse luminescence of the rhizosphere soil of couch grass and nettle was different during daytime and also differed between the soils taken from roots of the two plant species, especially in the beginning of May. CONCLUSIONS: The experimental data indicates that the daily variations of the element concentrations in plants might be a result of multiple effects of various factors. The differences in the daily element variations in the couch grass and nettle growing in the same site and collected simultaneously might be due to the fact that these plants belong to different clades. The diurnal fluctuations (that also include regular changes in the element concentrations in plants) can be different for monocotyledons (couch grass) and dicotyledons (nettle). New experimental findings on short-term variations in the concentrations of macro-nutrients and trace elements can help to gain a new insight into accumulation of the elements in different plant species and also be useful in agricultural practice.


Assuntos
Elymus , Oligoelementos , Urtica dioica , Feminino , Humanos , Plantas , Gravidez , Solo/química , Oligoelementos/análise , Urtica dioica/química
18.
J Plant Physiol ; 276: 153760, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926442

RESUMO

Large-scale coal mining activities on the QTP have affected the natural grassland ecosystem which will take decades to recover. Therefore, looking for an effective vegetation restoration method is the most effective way to restore the ecosystem. In this study, we explored the effects of three vegetation restoration modes (coal mine spoils planting (CK), organic fertilizer planting (OF), and cover soil planting (CS)) on the five cold-resistance related physiological indices of three native Gramineae plants (Elymus nutans, Poa crymophila and Festuca sinensis) growing in three different habitats (shady slope, sunny slope, and flat slope). The higher contents of soluble sugar (SS) in the Elymus nutans (213.46 mg/g) and Festuca sinensis (202.84 mg/g) were recorded under the CS treatment in the sunny slope habitat. The FP contents of Elymus nutans (421.31 µg/g), Poa crymophila (310.06 µg/g), and Festuca sinens (288.45 µg/g) were higher under the CK treatment in the flat ground habitat. The higher (P < 0.05) content of chlorophyll (Chl) was recorded in the Elymus nutans (2.13 mg/g) under the CS treatment in the sunny slope habitat compared to the other two plants. We observed lower MDA contents in the Elymus nutans (3.19 nmol/g) and Festuca sinensis (3.56 nmol/g) under the CK treatment growing in the shady slope habitat. In the shady slope habitat, the H2O2 contents of Elymus nutans (15.86 µmol/g), Poa crymophila (6.78 µmol/g), and Festuca sinensis (8.76 µmol/g) under the CS treatment were significantly lower compared to other treatments. Based on membership function method, the low-temperature adaptability order of the three restoration plants from strong to weak was Elymus nutans > Festuca sinensis > Poa crymophila. While the effectiveness order of the three vegetation restoration models in alpine mining areas from good to bad was CS > OF > CK. This study will provide a theoretical and guiding significance to evaluate the effectiveness of different restoration methods, formulate optimal restoration strategies and guide the sustainable restoration of the damaged ecosystems of the alpine mining areas.


Assuntos
Elymus , Festuca , China , Ecossistema , Peróxido de Hidrogênio , Plantas , Solo , Tibet
19.
PeerJ ; 10: e13768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919402

RESUMO

Elymus sibiricus is a highly valuable perennial forage that is widely planted in the Qinghai-Tibet Plateau (QTP) region. However, E. sibiricus artificial grasslands have a short utilization lifespan, and reach the highest yield in the 2nd and 3rd year of plantation, then rapidly drop its productivity. We hypothesized that autotoxicity is one of the mechanisms for the reduction of the productivity. To test this hypothesis, we prepared the water extract from rhizosphere soils of E. sibiricus planted for 3, 4, 5, and 8 years and examined the effects of the extract concentrations at 0.05, 0.1, 0.2, and 0.5 g/mL on seed germination, seedling growth, physiological characteristics and phytohormones in the aboveground and roots of E. sibiricus. The results showed that the soil extract concentration, planting years, and their interaction had significant influences on the most of these indices. The soil extract inhibited the seed germination and growth of seedlings, and the inhibitory effects appeared to be stronger at the 0.5 g/mL rhizosphere soil extract for 5 and 8 years. The superoxide dismultase and peroxide activities, the free proline concentration, soluble sugar concentration were altered. The malondialdehyde concentration was, in general, increased, especially in 8 years soil extract. The indole acetic acid and gibberellic acids concentrations were lowered, while the abscisic acid concentration varied. These changes were depending on the extract concentration and the years of planting, without clear patterns in some of them in response to the extract concentration and planting years. In summary, autotoxicity can be a contributor to the retardation of the growth and development of artificial E. sibiricus grasslands. The inhibitory effects could be attribute to impaired antioxidant capacity and disturbance of osmortic-regulatory substances and plant hormones, and are more profound on the root than on the aboveground part of the seedlings.


Assuntos
Elymus , Plântula , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Elymus/fisiologia , Solo , Rizosfera , Água/farmacologia , Sementes
20.
PeerJ ; 10: e13080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341045

RESUMO

The roles of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) in improving nutrition uptake and soil quality have been well documented. However, few studies have explored their effects on root morphology and soil properties. In this study, we inoculated Elymus nutans Griseb with AMF and/or PGPR in order to explore their effects on plant growth, soil physicochemical properties, and soil enzyme activities. The results showed that AMF and/or PGPR inoculation significantly enhanced aboveground and belowground vegetation biomass. Both single and dual inoculations were beneficial for plant root length, surface area, root branches, stem diameter, height, and the ratio of shoot to root, but decreased root volume and root average diameter. Soil total nitrogen, alkaline phosphatase, and urease activities showed significant growth, and soil electrical conductivity and pH significantly declined under the inoculation treatments. Specific root length showed a negative correlation with belowground biomass, but a positive correlation with root length and root branches. These results indicated that AMF and PGPR had synergetic effects on root morphology, soil nutrient availability, and plant growth.


Assuntos
Elymus , Micorrizas , Solo/química , Bactérias , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...